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ABSTRACT
The Aquanet project builds a low-cost monitoring system
for the water resources in the city of Chania in Greece. This
monitoring process is performed by installing sensor nodes
at distribution tanks and periodically transmitting measure-
ments regarding the water level to a remote base station.
In this paper we present the data management aspects of
this network, focusing on how the transmitted data is com-
pressed in order to minimize the energy consumption and
how information concerning the water level at the distribu-
tion tanks can be used to derive a water management policy
in the network.

1. INTRODUCTION
Recent advances in microelectronics have enabled the de-

velopment of large scale sensor networks for a variety of
monitoring applications, ranging from wildlife monitoring,
health-care, traffic monitoring, agriculture, production mon-
itoring, battlefield surveillance, etc. What many of these
applications have in common is the need to use a low-cost
system for monitoring, alert and/or decision making. Given
the scarcity of water resources in many regions of the world,
it is interesting to investigate whether sensor networks can
effectively be used to facilitate water management in large
cities, in order to optimize water distribution.

In this paper we describe the compressed data acquisi-
tion from water tanks in the Aquanet project, a project
that involves the design and development of a smart, au-
tonomous, self-powered and low-cost, pilot wireless sensor
network (WSN) for drinking water management, appropri-
ate for city-wide scale and a system for water-leakage de-
tection. Aquanet aims at augmenting the existing monitor-
ing and management functionality for water management
of the DEYAX Water Company at Chania city in Greece.
In particular, given limitations in the physical design of the
distribution network, water can only be moved from large,
remote tanks, usually residing in high altitude, to many dif-
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ferent distribution tanks that lie closer to the consumer. In
high demand periods, such as the summer, when there is
significant shortage of water, it is essential that water is
distributed accurately where and when needed. This intu-
itively requires that water is kept as much as possible in
the remote tanks. On the other hand, one should not waste
valuable resources, such as the water available from springs,
which cannot be used (thus, not exploiting the water that
they provide, since this water ends up in lakes or in the sea)
when the remote tanks are full. Thus, a monitoring system
that maintains a continuous, accurate view of the network
is required.

In order to maintain an accurate, up-to-date view of the
network, in the Aquanet project we are currently placing
sensors that measure the water level at different water tanks.
There are several water tanks at the municipality of Chania
and within the scope of the project sensors will be placed
in about 20 points, mainly at the core of the distribution
network. The readings from the monitored tanks are trans-
mitted through a wire to sensor nodes that are placed at
the rooftops of the tanks and, from the later sensors, data
can then be transmitted, using multihop communication
through wireless links towards a central gateway and stored
in a database. Users can remotely access this data remotely
through the internet, but a GIS application is also under
development by other project partners for the visualization
of the network state. Given the known layout of each wa-
ter tank and differences in its water level, one can deduce
the amount of water that is consumed. The sensor nodes
placed at the rooftops are battery-powered and the frequent
replacement of their batteries is not desirable, as it would re-
quire not only unounting them, but also require then ensur-
ing that their protecting boxes are properly sealed to protect
them from rain, humidity, dust etc.

In this work we demonstrate how we can explore the tem-
poral correlation of sensor readings in order to reduce the
transmitted data in the network. By appropriately trans-
forming our problem, we can use standard techniques for the
compression of data, such as Huffman Encoding, Golomb-
Rice and Exponential Golomb-Rice codes. We evaluate these
techniques on real data, provided by the DEYAX water com-
pany, based on their compression ratio (i.e., how much they
compress the transmitted data). We need to note that an-
other critical limitation in designing low cost sensors relates
to the memory required by the sensor nodes. While some
tested algorithms have slightly worse compression ratio, they
may be preferred since they have minimum memory require-
ments and extremely simple implementations.



Our paper proceeds as follows. In Section 2 we briefly
present related work, while in Section 3 we present the net-
work setup and briefly mention some guidelines for water
management. In Section 4 we present our algorithms for
reducing the amount of transmitted data, along with some
optimizations. Section 5 contains our experimental evalua-
tion, while Section 6 contains concluding remarks.

2. RELATED WORK
While a vast amount of past work (i.e., [7, 5, 4]) has

looked into ways of prolonging the lifetime of sensor net-
works by reducing data communication, many research find-
ings are not applicable in our application scenario. First of
all, the fluctuating water demand renders as inapplicable
the use of models [4, 5] that infer/predict the readings of
one sensor from the corresponding readings of other nodes.
While in-network processing [7] is very efficient for aggregate
functions such as MAX, MIN, SUM etc, they are not efficient
when the readings of all sensor nodes need to be collected at
frequent intervals. Please note that compression techniques
that seek to collect large amounts of historical data [1] are
also inapplicable, as they can transmit data at infrequent
intervals and, thus, fail to provide an up-to-date view of the
network. Because accurate water level readings are required
in our application, since a future goal is to also detect water
leaks in the network, prior approaches for approximate ag-
gregate queries [2, 11] are inapplicable, while standard data
collection techniques [7] do not achieve any data reduction.

In [8] the authors design and implement a query based
processor to collect each measurement collected by sensor
nodes at each epoch at a central site, called TinyDB. The
work in [3] describes a lossy compression schema, by iden-
tify linear correlations among historical readings of the sen-
sor node measurements. Their framework compresses and
transmits the data only when enough data is collected.

Several data compression techniques have been implemented
in wireless sensor networks [13]. Due to the limited resources
available in our sensor nodes, we opted for lossless compres-
sion methods with low memory and processing requirements.
These methods are based on Huffman, Golomb-Rice, Expo-
nential techniques (see [9], [10] and [14]). The work in [14]
describes modified static and adaptive Huffman algorithms,
on the residue values, suited for wireless sensor networks.
The authors in [9] describe a version of an exponential-
Golomb code that can compress negative and non-negative
differences based on their statistical characteristics.

In our work we exploit the statistical features of the data,
in order to compress the collected measurements either with-
out a coding lexicon, or with a low memory space dictionary,
as in the case in [6, 12, 10]. The work in [10] calculates the
optimal number of low order bits to represent the group
index in the Golomb-Rice encoding technique. A statis-
tical compression technique, that uses a predictive coding
scheme to compress differences between current observed
values and predictive values, for WSN is described in [6].
Residues/Differences which fall inside a small error range
are represented with a compressed code, while the remain-
ing values are sent in a raw, uncompressed form. Similarly,
the work in [12] presents results for the probability distri-
bution of the residual values, by identifying the optimal pa-
rameters from the statistical distribution of the collected
measurements, in order to maximize the energy savings.

Figure 1: Aquanet - Water Distribution Network

3. PROBLEM SETUP
In this work we describe the important aspects of data ac-

quisition and data management for a low power, water man-
agement system based on a wireless sensor network for a city
distribution network. An illustration of the water manage-
ment network topology is depicted in Figure 1. The network
contains some large, remote tanks, usually residing in high
altitude, that supply water to many different distribution
tanks that lie closer to the consumer. Sensors that measure
the water level are placed in water tanks. Their readings are
transmitted through a wire to sensor nodes that are placed
at the rooftops of the tanks and, from the later sensors,
data can then be transmitted, using multihop communica-
tion through wireless links towards a central gateway and
stored in a database. The gateway and database are placed
at the Technical University of Crete. Prior to their trans-
mission, the collected water level readings are encoded and
compressed, in order to reduce the bandwidth consumption
and to prolong the network lifetime.

Given the known layout of each water tank and differences
in its water level, one can deduce the amount of water that
is consumed. This estimated water consumption can then
be used in order to derive a simple water management algo-
rithm. In high demand periods, such as the summer, when
there is significant shortage of water, it is essential that wa-
ter is distributed accurately where and when needed. This
intuitively requires that water is kept as much as possible
in the high-altitude remote tanks. On the other hand, one
should not waste valuable resources, such as the water avail-
able from springs, which cannot be used (thus, not exploiting
the water that they provide, since this water ends up in lakes
or in the sea) when the remote tanks are full. Thus, besides
estimating the current water consumption in the network,
another important input parameter for decision making is
the amount of water that can be collected by springs and
other ”free” resources. If the latter amount cannot cover
the current water consumption, then we operate in a mode
of shortage of water, by trying to accumulate water in the
large, remote tanks, while operating the distribution tanks
at lower levels. In prolonged high demand periods the dis-
tribution tanks will operate close to their minimum allowed
level. At the same time, water pumping from springs is set
to its maximum value, water is pumped from water wells
and, as a last resort, water may be purchased by a differ-
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Figure 2: Residue values distribution, by varying
the consecutive sensor measurements sample rate

ent provider. On the other hand, if the water supplied by
springs is enough, we start filling the distribution tanks and
keep operating them close to their maximum level, while
pumping only the required amount of water fron springs.

4. COMPRESSING WSN MEASUREMENTS

4.1 Data Collection - Main Ideas
In this section, we present the in-network processing scheme

that we used in our system, for the dissemination of com-
pressed and approximate measurements. In particular, we
demonstrate how we can explore the temporal correlation of
sensor readings, in order to reduce the bandwidth of the
transmitted measurements and to maximize the network
lifetime. We adopt statistical compression models, where
each discrete tank level value is represented with a variable-
length code, based on the probability distribution of the
source. An higher frequency alphabet value corresponds to
a higher appearance probability of occurrence and is prefer-
able to be encoded using a shorter binary representation. In
contrast, an infrequent level tank measurement is encoded
using a larger binary encoding. We want to generate bi-
nary sequences that can be uniquely decoded and with the
minimum average coding size. Coding algorithms based on
the probability estimation produce binary sequences, con-
taining a lower number of bits, while the coding process is
either performed entirely without a coding lexicon, or using
a low memory space dictionary.

Due to the limited memory capabilities of our low cost sen-
sors nodes, we focused on encoding techniques that can effi-
ciently compress the transmitted data, are simple to imple-
ment and have low memory requirements. We, thus, focused
on techniques such as Huffman Encoding, Golomb-Rice and
Exponential Golomb-Rice codes. Such techniques are effi-
cient when some data values are significantly more frequent
from others, by encoding frequent values with fewer bits. In
the real data that we had available, this was not the case,
thus seemingly rendering them as ineffective.

However, one can naturally expect consecutive measure-
ments from any given water tank to have similar values.
We exploit this data characteristic by using Residual-Delta
Coding compression techniques to compress the differences

Figure 3: Delta Coding packet transformation, while
sending the first measurement as is. Deltas are then
compressed using standard encoding techniques.

(deltas) of consecutive sensor measurements, rather than the
measurements themselves. In Figure 2 we depict the distri-
bution of such differences in our real data when the interval
between consecutive measurements is varied. The distribu-
tion resembles a Laplacian distribution.

Similar to prior work, for the Golomb-Rice and Exponen-
tial Golomb-Rice encoder, negative residues values can be
represented by mapping (during the encoding process) ∆V i

to the value ∆V i
′ = 2|∆V i|−sign(∆V i). Respectively, dur-

ing the decoding process we map an even received difference
value ∆V i

′ to ∆V i
′/2, while an odd ∆V i

′ value is mapped
to − (∆V i

′/2) + 1. This process is not needed for the Huff-
man encoder, since it can easily store symbols corresponding
to negative values in its tree dictionary building process.

One may incorrectly assume that it suffices to transmit
at each timestamp the delta of the current reading from the
previous one. In sensor network applications messages are
often lost due to collisions. Thus, such an approach would
incur a reconstruction error that may accumulate over time.
Instead, we propose delaying the transmission of data un-
til K successive measurements have been collected and to
compress them as a group. The value of K depends on the
maximum latency tolerated by our application for receiving
water tank level measurements. To avoid the same problem
with lost packets, the first measurement is sent as is, while
each of the remaining K−1 measurements measi is encoded
via successive differences ∆V i = measi −measi−1. This is
depicted in Figure 3. The receiver can recalculate the orig-
inal measurements packets by adding the difference on the
first uncompressed data and then, in the same manner, for
the rest of the residue values. In case of lost packets, we
exploit the temporal correlation of the measurements and
interpolate the missing measurements based on the mea-
surements prior and after the lost packet. As a note, due to
the acquisition of measurements at specific intervals and the
little time required for the transmission of data, there is no
need to transmit timestamps for the encoded measurements.
Although this technique fails to reduce the transmitted val-
ues by a factor greater than K (since 1 out of K values is not
compressed), it is in practice very efficient at reducing the
number of discrete values that can occur, thus substantially
limiting the size of the coding dictionary.

4.2 Additional Optimizations
We now present two additional optimizations for further

reducing the amount of transmitted data. The first opti-
mization exploits the Laplacian distribution of the residual



values and the high frequency of the most common differ-
ence in order to further compress the data. The second op-
timization targets a lossy compression of the collected mea-
surements.

Trailing Zero Deltas. Until now we have only exploited
the distribution of the residues values. In the same man-
ner, we can exploit K consecutive differences in the sent
packet. As we have mentioned, consecutive measurements
are correlated abd do not significantly change over a small
time window. Moreover, given Figure 2, the most common
residual ∆V value is by far the value of zero. We now de-
scribe an additional compression ratio optimization that can
be employed. When sending a packet with K encoded mea-
surements, we can omit the binary code of the trailing zero
deltas (i.e., the most common difference between consecu-
tive readings) in the encoding sequence, instead of including
the binary representation for all differences. The receiver de-
codes the coding sequence and, if he receives fewer than K
values, fills the remaining trailing positions with zero delta
values. We term this optimization as ZeroLast in our exper-
iments.

Allowing for Lossy Compression. An equally signifi-
cant aspect is to implement a lossy compression approach
for comparative performance testing with the lossless tech-
niques. Generally, lossy compression techniques ensure higher
compression ratios, but incur loss of accuracy since the de-
compressed data does not represent the real measured val-
ues with 100% accuracy. Techniques they would introduce
additional complexity in our implementation, or have more
memory requirements, are rejected.

We now explain how our techniques can better compress
the transmitted data when we allow a maximum absolute
error factor ε at the reconstructed data. For each of the
last K − 1 measurements measi of the packet, instead of
transmitting the encoding of the delta ∆Vi from the pre-

vious measurement, we select and encode a different ∆V
′
i

value, such that: (1) when the received reconstructs the ap-
proximate value of measi, the maximum absolute error of

the reconstruction is ε, and (2) ∆V
′
i has the smallest bi-

nary encoding from all permissible values that satisfy the

first condition. In case of a tie between different ∆V
′
i values

with encodings of the same length, we select the one that
results at the lowest reconstruction error. We demontrate
in our experiments that even a small value of ε can signif-
icantly reduce the size of the transmitted data, especially
when combined with our ZeroLast optimization.

5. EXPERIMENTS
We now evaluate our techniques for compressing WSN

measurements from water tanks. For our metric we use the
commonly used compression ratio, defined as: (1− output size

input size
)×

100%. All data sizes are expressed in bytes. For the de-
scribed lossy-approximate compression techniques, we de-
fine the maximum absolute error factor ε which ensure us
to provide, user pre-defined error guarantees. In our ex-
periments we utilized a real world data set with tank level
measures provided to us by the Municipal Enterprise of Wa-
ter and Sewage of Chania (DEYAX). We used 10% of the
data for training (i.e., to extract the residue distribution).
Our validation data consists of water level measurements,
taken every minute for an entire year. Our simulator was
written in C language. All experiments were run on a Alix
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Figure 4: Compression Ratio vs Packet Size
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Figure 5: Compression Ratio vs Error Factor,
Packet Size=15

system board, running Ubuntu, with processor clocked at
500 MHz and 256 MB RAM.

In Figure 4 we depict the compression ratio as we vary
the number of measurements encoded within a single packet.
Please recall that the first measurement is always sent un-
compressed. As the packet size increases, the overhead of
the uncompressed measurement is amortized over more mea-
surements, thus resulting in an increasing compression ra-
tio. Huffman Encoding performs the best, while Exponen-
tial Golomb-Rice closely follows. Please note that the latter
method has no memory requirements and, thus, could be
preferable in cases of sensors with very limited memory ca-
pabilities.

The ZeroLast optimization offers significant benefits in all
cases. The benefits are larger for smaller packet sizes since,
in that case, a larger percent of the measurements (i.e., those
with zero delta values at the end of the packet) is encoded
without requiring any space. Please note that the reduction
for ZeroLast is always twice in Golomb-Rice, compared to
Huffman and to Exponential Golomb-Rice. The reason is
that the value of 0 was encoded using two bits in Golomb-
Rice, while it required just one bit in Exponential-Golomb
Rice and in Huffman. Thus, a given number of trailing zero
delta values in a packet saves twice as much space (com-
pared to not using ZeroLast for each particular technique)
in Golomb-Rice when using ZeroLast. Please note that the



number of encoded values in a packet is often dictated by
the application, as increasing this value leads to a larger la-
tency for receiving the measurements from each tank (i.e.,
the required number of time periods must expire in order to
collect the desired number of measurements).

In Figure 5 we depict the compression ratio for all encod-
ing algorithms when we vary the maximum allowed error at
the reconstruction of the measurements, when each packet
includes 15 measurements. While this allowed data approxi-
mation provides some benefits for all techniques, these bene-
fits are more profound when this is combined with our Zero-
Last optimization. This is because many delta differences at
the end of the packet can often be encoded, for all encoding
algorithms, as a zero difference, thus significantly reducing
the transmitted information.

6. CONCLUSIONS
In this paper we presented our techniques for effectively

reducing the amount of transmitted data from sensors placed
at water tanks in the city of Chania in Greece. Our algo-
rithms employ residual-delta compression techniques, cou-
pled with encoding schemes like Huffman Encoding, or Golomb-
Rice and Exponential Golomb-Rice codes. Our experiments
demonstrate that our techniques can achieve high compres-
sion ratio, especially when coupled with additional optimiza-
tions that we propose.
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